If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-9=131
We move all terms to the left:
4x^2+8x-9-(131)=0
We add all the numbers together, and all the variables
4x^2+8x-140=0
a = 4; b = 8; c = -140;
Δ = b2-4ac
Δ = 82-4·4·(-140)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-48}{2*4}=\frac{-56}{8} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+48}{2*4}=\frac{40}{8} =5 $
| 4/x-10=6 | | 80x×0.15(90)=70x+70×90 | | -w^2+3w+50=0 | | 4b=2b+27 | | 5x+4(-3)=17 | | 4^2x+1=512 | | 2n³+n²=0 | | 5n+18=33 | | 9j-29=43 | | 9x-5x+2=x-8+10 | | |x-3|=3 | | (5x+5)=5x-500 | | 5l-13=47 | | 900+0.25x=1 | | 3l+9=54 | | 5x−3(4x−8)=−11 | | 5b+6=20 | | j/5=5/125 | | 4g+3=55 | | 19x=2,0 | | 8x=81+41 | | 15=+4(5y-10)= | | 15=+4(5y-10) | | 5x=41+21 | | 8(^2x+3)=48 | | 2w-12=42 | | 6t=75-15 | | 8c-7(c-3)+4=16 | | 0.06=x*0.05+(1-x)*0.1 | | 5p=75-10 | | 8x–15–6x=11 | | -5r-3=-18 |